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ABSTRACT 

The ability to delineate geologic facies and to estimate their properties from sparse data is 
essential for modeling physical and biochemical processes occurring in the subsurface.  If 
such data are poorly differentiated, this challenging task is complicated further by preventing 
a clear distinction between different hydrofacies even at locations where data are available. 
We study the problem of facies delineation in geologic formations by means of the Support 
Vector Machine (SVM). To show the potential of the SVM, we randomly generate a two-
dimensional porous medium composed of two heterogeneous materials, and then reconstruct 
boundaries between these materials from a few data points. We assess the performance and 
accuracy of the SVM-based facies delineation technique and assess in the presence of either 
well differentiated or poorly differentiated information about hydraulic parameters, such as 
hydraulic conductivity. 

1. INTRODUCTION 

Our knowledge of the spatial distribution of the physical properties of geologic formations 
is often uncertain because of ubiquitous heterogeneity and the scarcity and sparsity of 
information. Yet capturing the complexity of natural hydrogeological systems and quantifying 
the associated uncertainty is of paramount importance for reliable groundwater flow and 
transport assessments. While many studies consider the effects of incorporating various types 
of information (including hydraulic conductivity, electrical resistivity, hydraulic heads and/or 
solute travel times) on predicting the salient features of flow and transport in heterogeneous 
underground reservoirs, the uncertainty associated with the delineation of lithofacies and 
associated hydraulic conductivity (and eventually porosity) from limited geological and 
geophysical data are only marginally analyzed. Such data, which include grain size 
distribution curves, are typically derived from core samples and are often poorly differentiated 
thus further compounding predictive uncertainty.  

Since the classification of soils and other natural porous media is usually performed upon 
integrating information of percent sand, silt, and clay, and some measured value of hydraulic 
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parameters (e.g., hydraulic conductivity), it is often subjective and therefore somewhat 
arbitrary. This forces the introduction of modeling approximations and can give rise to cross-
correlations between material attributes [Neuman, 2003]. While such correlations between 
blocks might occur in systems where lenses of one material are laid down simultaneously 
with a base material for a while so that uncertain boundaries result [Rajaram and 
McLaughlin, 1990], hydrofacies delineation in the presence of poor data classification can 
yield apparent cross-correlations between materials even if the hydrogeologic attributes of 
geologic materials are themselves independent [Winter and Tartakovsky, 2002]. 

Geostatistics has become an invaluable tool for estimating facies distributions and their 
attributes at points in a computational domain where data are not available, as well as for 
quantifying the corresponding uncertainty [Guadagnini et al., 2004]. In the presence of poorly 
differentiated information, characterization of the heterogeneous aquifer structure is often 
performed in two steps. First, a multivariate facies-based parameterization approach relying 
on multivariate cluster analysis [McQueen, 1967] is applied to classify aquifer materials and 
to describe the heterogeneity of the aquifer lithology [Ptak and Liedl, 2002; Riva et al., 2005]. 
The resulting clusters are representative of sedimentological facies. Then, parameters 
distributions within each identified material block are estimated. Geostatistical frameworks 
treat a formation's property such as hydraulic conductivity, K, as a random process that is 
characterized by multivariate probability density functions or, equivalently, by ensemble 
moments. Whereas spatial moments of K are obtained by sampling K in physical space, its 
ensemble moments are defined in terms of samples collected in probability space. In reality 
only a single realisation of a geologic site exists. Therefore, it is necessary to invoke the 
ergodicity hypothesis in order to substitute the sample spatial statistics, which can be 
calculated, for the ensemble statistics, which are actually required as input to a stochastic 
model of flow or contaminant transport. Ergodicity cannot be proved and requires a number 
of modeling assumptions. 

Machine learning provides an alternative to the geostatistical framework, allowing one to 
make predictions in the absence of sufficient data parameterization, without treating geologic 
parameters as random and, hence, without the need for the ergodicity assumptions. Intimately 
connected to the field of pattern recognition, machine learning refers to a family of 
computational algorithms for data analysis that are designed to automatically tune themselves 
in response to data. Tartakovsky and Wohlberg [2004] used a subset of the machine learning 
techniques - the Support Vector Machine (SVM) and its mathematical underpinning, the 
Statistical Learning Theory (SLT) of Vapnik [1998], which is ideally suited for the problem of 
facies delineation in geologic formations. While similar to neural networks in its goals, the 
SVM is firmly grounded in rigorous mathematical analysis, which allows one not only to 
assess its performance, but to bound the corresponding errors as well. Like other machine 
learning techniques, SVMs enable one to treat the subsurface environment and its parameters 
as deterministic. Uncertainty associated with insufficient data parameterization is then 
represented by treating sampling locations as a random subset of all possible measurement 
locations. 

Recently we [Wohlberg et al., 2006] used a synthetic example to demonstrate that SVMs 
provide a viable alternative to geostatistical frameworks by allowing one to delineate 
lithofacies from well-differentiated hydraulic conductivity data. We found that: (i) SVMs 
slightly outperfom geostatistical approaches in reconstructing the boundary separating disjoint 
blocks of geologic facies, while being significantly less labor intensive; and (2) when data 
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sampling density is low (e.g., 0.25% or ten data points) the geostatistical inference becomes 
meaningless, while SVMs are capable of providing reasonable estimates of internal blocks 
boundaries. The use of SVMs for facies delineation depends critically on the ability to obtain 
a reliable classification (i.e., determine the corresponding material identity) of a data point by 
thresholding the measured hydraulic conductivity, since the classification for each 
measurement point is required for the SVM training process.  The main goal of this study is to 
extend the analysis of Wohlberg et al. [2006] to account for poorly differentiated hydraulic 
conductivity data. 

2. FACIES DELINEATION FROM POORLY DIFFERENTIATED DATA 

We consider a problem of reconstructing a boundary between two heterogeneous 
materials M1 and M2 from spatially distributed parameter data. The latter can consist of 
hydrodynamic data (e.g., hydraulic conductivity), geophysical data (e.g., electric resistivity), 
and/or sedimentological data, collected at N selected locations xi = (xi, yi)T, where i = 1, ..., N 
and T is transpose. The first step in our facies delineation procedure is to analyze the 
distributions of samples with the goal of assigning an indicator function 
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to each point where data are available.  This is precisely the step that is affected most by the 
poor differentiation of data.  Consider, for example, a subsurface environment consisting of 
two heterogeneous facies that are formed by clean-sand and silty-sand.  A typical histogram 
of hydraulic conductivity data for such an environment is shown in Figure 1.  The data falling 
in the overlapping region between the two distributions do not render themselves to a 
straightforward classification by (1). 
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FIGURE 1. A typical sample frequency distribution of the log hydraulic conductivity Y = ln K of a 
subsurface environment composed of silty-sand and clean-sand (reference fields).  The log hydraulic 
conductivity of the silty-sand and clean-sand facies ranges between -7.00 and -2.70 and -4.15 and 
0.60, respectively. 



Alberto Guadagnini, Brendt E. Wohlberg, Daniel M. Tartakovsky, Michela De Simoni 

  4 

 
To assigning the indicators (1) to such data, we employ the so-called k-means clustering 
algorithm, which consists of (i) identifying a number of clusters – two geologic facies in our 
example, (ii) treating the minimum and maximum value of hydraulic conductivity as initial 
values for the means (centroid positions) of the respective populations; (iii) assign each 
conductivity measurements to the clusters with the closest centroid; (iv) recalculating the 
centroids based on the current cluster assignments, and (v) repeating (iii) and (iv) until the 
centroid positions stabilized.  

Let Ī(x, α) be an estimate of a “true” indicator field I(x), whose adjustable parameters α 
are consistent with, and determined from, the available information. Our objective is to 
construct an estimate that is as close to the true field as possible, i.e., to minimize the 
difference between the two, ||I−Ī||. 

3. SUPPORT VECTOR MACHINE 

The theoretical foundation of SVM techniques relies on the definition of a bound for the 
expected risk, which is provided by the maximum margin SVM [e.g., Cristianini and Shawe-
Taylor, 2000]. The simplest maximum margin SVM deals with linearly separable data 
collected from perfectly stratified geologic media, where different geologic facies are 
separated by planes (in three dimensions) or straight lines (in two dimensions), as analyzed by 
Tartakovsky and Wohlberg [2004]. In most practical problems, boundaries between geologic 
facies are significantly more complex than a straight line or a plane. To account for this 
geometric complexity, one can generalize the linear maximum margin SVM by noting that 
data which cannot be separated by a straight line or plane in the two- or three-dimensional 
space of observation often become linearly separable (by a hyperplane) when projected onto 
another, usually higher-dimensional space.  This is made computationally feasible by the use 
of kernels (see Wohlberg et al. [2006] for details). 

4. SYNTHETIC EXAMPLE 

 
FIGURE 2. (a) Material classification of Wohlberg et al. [2006]; and (b) Distribution of log hydraulic 
conductivity, whose values range from -7.00 (dark blue) to 0.60 (red).  



CMWRXVI – Delineation of Geologic Facies with Support Vector Machines 

.  5 

 
We use SVMs to reconstruct, from a few data points selected at random from a uniform 

distribution, the boundaries between two heterogeneous geologic facies in a synthetic porous 
medium shown in Figure 2.  The boundaries between the silty-sand (an ambient formation) 
and clean-sand (an inclusion) facies are the same as those used in the analysis of Wohlberg et 
al. [2006].  The following procedure was used to assign a value of hydraulic conductivity to 
each point (pixel).  First, we generated two autocorrelated, weakly stationary Gaussian fields 
with the ensemble means of −4.96 and −2.30, respectively.  (The mutually uncorrelated 
random fields had unit variance and Gaussian autocorrelation with unit correlation scale.)  
These values correspond to the geometric means of hydraulic conductivity equal to 7 × 10−3 
and 1 × 10−1, respectively, when conductivities are measured in [cm/s], which represent silty-
sand and clean-sand materials [Freeze and Cherry, 1979].  Then, we superimposed these 
fields onto the facies map (Figure 2a) to obtain the conductivity field in Figure 2b.  The 
resulting distributions of log hydraulic conductivities within the silty-sand and clean-sand 
facies are shown in Figures 3a and 3b, respectively. 

 
 

 
FIGURE 3. Distributions of log hydraulic conductivity Y = ln K within the silty-sand (left) and clean-
sand (right) facies.  Note that these distributions are non-Gaussian.  

 
We use our implementation of SVMs to reconstruct the boundary between the two 

materials from a few (randomly selected) data points.  Sampling densities ranging from 
approximately 0.25% (10 data points) to 5% (80 data points) were considered.  For each 
sampling density, we randomly generated 20 realizations of the locations of data points and 
counted the number of elements on the grid that were misclassified by the SVMs.  The results 
reported below represent the averages over 20 realizations. 

When one deals with poorly differentiated data, a reliable classification of the 
measurement points is not possible, so that the classifications must be estimated.  We 
accomplish this by employing the k-means algorithm described above.  In Figure 4, the line 
with crosses displays the average error in k-means estimation of this classification for each 
sampling density, measured as the fraction of points misclassified with respect to the ground-
truth classification.  Note that k-means estimation error increases with sampling density, 
which may seem counter-intuitive.  To understand this behavior, it is important to recognize 
that the ground-truth classification may be such that it cannot be obtained from a threshold on 
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the corresponding scalar values.  This can be demonstrated by the two sample sets (sorted 
conductivity values and corresponding ground truth classification) shown in Table 1.  While 
the data in Example 1 can be perfectly classified by a threshold of (-4.2 -3.4)/2, the data in 
Example 2 has a minimum threshold-based classification error of 2/6.  The line with circles in 
Figure 4 shows the smallest possible error that can be obtained by estimating the classification 
with thresholding the hydraulic conductivity values.  We observe the increase of the minimum 
possible threshold-based estimation error as the number of samples grows, the number of 
ways of classifying the points grows much faster than the number of ways of partitioning the 
points based on a threshold. 
 

 
FIGURE 4. The number of misclassified data points (reported as a fractional error, i.e., a fraction of 
the misclassified data points relative to the total number of sample points) as a function of the number 
of samples. 
 

TABLE 1. Examples of threshold-based minimum classification errors. 

Example 1 
Log-conductivity - 5.1 - 4.5 - 4.2 - 3.4 - 2.0 - 1.9 
Indicators - 1 - 1 - 1 + 1 + 1 + 1 

Example 2 
Log-conductivity - 5.4 - 5.2 - 4.3 - 4.1 - 3.6 - 2.1 
Indicators - 1 - 1 + 1 - 1 + 1 + 1 

 
After identifying the membership of the data points in either of the facies, i.e., after 

assigning the values of the indicator function to each data point, we used our implementation 
of SVMs with the Gaussian kernel to estimate the boundaries between the two facies.  To find 
the SVM parameters, we used the leave-one-out approach, as described in Wohlberg et al. 
[2006].  Figure 5 quantifies the boundary reconstruction errors introduced by this procedure 
when applied to the indicator function data inferred from the k-means clustering algorithm 
(the line with squares) and the threshold minimum (the line with circles).  The errors are 
reported as a number of misclassified pixels relative to the total number of pixels.  As can be 
expected, the misclassification errors decrease as a number of samples (data points) increases.  
Since the poor differentiation of data introduces the interpretive errors (Figure 4) when the k-
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means clustering algorithm is used to assign the values of the indicator function to such data, 
the reconstructed boundary between the two facies is more prone to errors than its counterpart 
that could be reconstructed from well-differentiated data (see Figure 7 in Wohlberg et al. 
[2006]).  However, considering the challenges posed by poorly differentiated data, the 
performance of SVMs is remarkable. 
 

 
FIGURE 5. The boundary reconstruction errors (reported as a fraction of the misclassified 
pixels relative to the total number of pixels) as a function of the number of samples. 

 

5. SUMMARY 

We employed support vector machines (SVMs) to delineate geologic facies from a small 
set of poorly differentiated data. This was accomplished (i) by reconstructing, from a few data 
points, a synthetic randomly generated porous medium consisting of two heterogeneous 
materials.  The challenges posed by the poor differentiation of data stem from the fact that 
some measurements of, say, hydraulic conductivity do not allow one to determine with a 
required degree of certainty the membership of sampling locations in a given geologic facies.  
To assign values of an indicator function to such data, we used the k-means clustering 
algorithm.  Our analysis leads us to conclude that the SVMs combined with the k-means 
clustering algorithm provide an attractive, fully automated tool for identification of 
boundaries between geologic facies from poorly differentiated data. 
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